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Abstract—Document Image Recognition (DIR), a very useful technique in office

automation and digital library applications, is to find the most similar template for

any input document image in a prestored template document image data set.

Existing methods use both local features and global layout information. In this

paper, we propose a novel algorithm based on the global matching of Component

Block Projections (CBP), which are the concatenated directional projection vectors

of the component blocks of a document image. Compared to those existing

methods, CBP-based template-matching methods possess two major advantages:

1) The spatial relationship among the component blocks of a document image is

better represented, hence a very high matching accuracy can be obtained even for

a large template set and seriously distorted input images; and 2) the effective

matching distance of each template and the triangle inequality are proposed to

significantly reduce the computational cost. Our experimental results confirm these

advantages and show that the CBP-based template-matching methods are very

suitable for DIR applications.

Index Terms—Document image recognition, template matching, component

block projection.

�

1 INTRODUCTION

NOWADAYS, a large amount of existing paper documents are
transformed to digital document images through scanners or
cameras. Efficient storage, retrieval, and management of these
document image archives are extremely important in many office
automation and digital library applications. As a result, techniques
for automatic document image analysis are highly demanded. A
typical framework for a document image analysis system is given
in Fig. 1, where Document Image Recognition (DIR) is to recognize
the type of an input document image (or “query image”). Given
that document types are defined via the prestored document
template images (which can either be stored as physical images or
described with a language such as XML), DIR is often implemen-
ted as finding the most similar template for an input document
image. Obviously, a fast and accurate DIR algorithm will be very
helpful for the consequent automatic registration, annotation, and
text recognition of document images.

Existing DIR techniques [3], [5], [6], [9], [10], [11], [12], [14], [15],

[17], [18], [19], [20] can be roughly divided into two categories.

Methods of the first category rely on matching local features. For

instance, Lopresti [11] used the approximate string matching of

recognized characters for document recognition; Tseng and Chen

[19] registered forms based on three types of line segments; Fan and

Chang [6] registered forms using a line crossing relationshipmatrix;

Cesarini et al.’s form-reader system [3] used attributed relational

graphs; Shimotsuji and Asano [18] presented a 2D hash-table cell
structure to identify different forms; Watanabe et al. [20] described
blank form structures with the repetitions and positions of cells;
Safari et al. [17] proposed a projective geometry method to map an
input document to a template document. Many methods based on
matching local features are sensitive to distortions of document
images and themisdetection of local features (which are common in
general document images), and are often limited to particular types
of documents. The second category of DIR techniques combines
both local features and global layout information. For instance, Hull
[10] imposed a grid to the CCITT G4 pass-code maps of document
images and consequently composed feature vectors for recognition.
Hu et al. [9] proposed interval code to describe the spatial layout of
document images; Peng et al. [14], [15] used Component-Block-List
(CBL) matching to recognize document images with general layout
and contents. Compared to the first category, methods in the second
category often produce relatively better recognition accuracy,
although they are still subject to great improvement for real
applications.

In this paper, we propose a superior DIR algorithm which can
find many real applications such as automatic form data reading,
document sharing in video-conferencing systems, document image
retrieval, etc. The new method uses the directional projections of
component blocks of document images to produce very high-
recognition accuracy for imageswith large deformations. This paper
is organized as follows: Section 2 presents our approach in detail.
Section 3 shows four sets of experiment results. Section 4 gives a
brief discussion and conclusion.

2 METHODOLOGY

Our goal is to develop an accurate and computationally efficient
method for DIR applications. Both requirements are very im-
portant because of the great impact of the DIR performance on
subsequent procedures in a large document image processing
system (Fig. 1). Here, we present a global matching algorithm
using directional component block projections.

2.1 Component Block Projection Vectors

We produce the component blocks of a document image using a
document image processing package, PageX [13]. A scanned gray-
scale document image shown in Fig. 2a (which consists of
heterogeneous contents) is binarized and rotated to the upright
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Fig. 1. Block diagram of a typical document image analysis system.
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position as shown in Fig. 2b; then the component blocks, i.e., the

rectangular bounding boxes of the isolated content regions (i.e.,
texts or graphics) are extracted (Fig. 2b). (See [14], [15] for the

details of image preprocessing.) The width of component block
edges is defined as one pixel. We call the union of all component

blocks in Fig. 2b the “Component Block Representation” (CBR) of
the document image shown in Fig. 2a. Without losing any

generality, CBR can be viewed as a binary image of rectangular
boxes, where foreground pixels (i.e., box edges) take value 1 and

background pixels take value 0. We can write a CBR as an array

b11 � � � b1w
..
.

bnm
..
.

bh1 � � � bhw

2
64

3
75

ð1 � m � w; 1 � n � hÞ, where w and h are the image width and
height, respectively; bnm ¼ 1 if the pixel fn;mg is on the block
edge, otherwise bnm ¼ 0. Since CBR is independent of the concrete
block contents of a document, they can be used to deal with
documents of general contents (i.e., texts including paragraphs,
sentences or words in different languages and fonts, and graphics
including images, drawings, or logos) [14], [15].

To recognize an input document image as one of the prestored
templates, we obtain CBRs of both the input and template images
and find the bestmatching pair. Rather than using blocks as features
[14], [15], we define the directional projection of each component
block as the sum of pixel values across the respective CBR image
region in the specific direction. The projection vector of all blocks
together (in the sense of union) is called the global projection.
Hence, the global horizontal and vertical projection vectors are
½�w

m¼1b1m; � � � ;�w
m¼1bhm� and ½�h

n¼1bn1; � � � ;�h
n¼1bnw�, respectively. We

concatenate them (first horizontal and then vertical) as a long
feature vector withL ¼ ðwþ hÞ bins. Since each bin can be regarded
as one dimension, a document image is represented as a point in the
L-dimensional space in term of the global Component Block
Projection (CBP) vector.

CBP vectors have several valuable properties. First, they reflect
the spatial relationships of component blocks and the local
variations of individual component blocks. The changes of the
relative positions of blocks will lead to variations of either the
horizontal projection vector or the vertical projection vector or both.
Second, the global projection vector is robust to local block
variations, that is, individual block variations will only cause
localizedvariation to the global projectionvector. Third, CBPvectors
allow the following useful interpretation of block deformations. The
variation of the global horizontalprojection vector can be expressed
as the sum over the variations of one-pixel-wide columns (i.e.,
vertical lines) of the binary CBR image. The variation of the global
vertical projection vector is the sum over the variations of one-pixel-
thick rows (i.e., horizontal lines) of the binary CBR image. Note that
the generality of document contents indicates these variations can
appear anywhere. Therefore, we can assume that the local variation

of each rowor columnhas an independent identical distribution and
we can approximate the global projection variation with the
Gaussian distribution based on the central limit theorem:

pð�gðT ÞÞ ¼ pðgðQÞ � gðT ÞÞ

¼ 1

�
expf��½gðQÞ � gðT Þ�2g ¼ pðgðQÞjgðT ÞÞ;

ð1Þ

where gðQÞ and gðT Þ are the concatenated global projection vectors
of the input CBR Q and the corresponding template CBR T ,
respectively,�gðT Þ is the variation of gðT Þ, � and � are two positive
parameters. The last equal mark is valid because for any specific T ,
ðgðQÞjgðT ÞÞ, and ð�gðT ÞÞ are the same event. Equation (1) indicates
that, as long as the number of component blocks is large enough, the
distribution of the global projection variations will not depend on
any specific distribution of local block variations. Therefore, it is
possible to find a general solution to the DIR problem without an
analysis of more complicated local deformations. According to (1),
finding the optimal template T for an input CBR Q is equivalent to
maximizing pð�gðT ÞÞ, which further equals maximizing the
Gaussian function in (1).

2.2 Global Matching Methods

Given a template CBR set SðT Þ ¼ fTi; i ¼ 1; 2; . . . ;Kg, where K is
the total number of templates, i.e., jSðT Þj, for an input CBR Q, we
find the template CBR T � with the maximum posterior probability
pðTijQÞ, i.e.,

T � ¼ argmax
Ti

pðTijQÞ:

With the Bayesian theorem, we have

T � ¼ argmax
Ti

pðTiÞpðQjTiÞ
pðQÞ ¼ argmax

Ti

pðTiÞpðQjTiÞ:

For most applications where there is no priority of individual
templates, the prior distribution pðTiÞ can be set as uniform and we
have the maximum-likelihood scheme, i.e.,

T � ¼ argmax
Ti

pðQjTiÞ:

Based on global projection vectors, template T � can be obtained as
follows:

T � ¼ argmax
Ti

pðgðQÞjgðTiÞÞ: ð2Þ

Considering (1), we find T that is closest to Q.The following
Naive-Global matching method (“Naive-Global” for short) is used
to get the best T �:

T �ðQÞ ¼ argmin
T2S

DðgðQÞ; gðT ÞÞ; ð3Þ
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Fig. 2. Component Block Representation (CBR) of a document image. (a) The scanned grayscale image. (b) The CBR of (a) (component blocks are drawn as the

rectangular bounding boxes of the corresponding document image regions).



where Dð:Þ is the distance metric for the pair-wise CBP vectors
fgðQÞ; gðT Þg. Among many possible choices for Dð:Þ [16], here we
choose L1 distance due to its computational simplicity and
proportional weighting of the difference.

Since Naive-Global compares Q with every template in SðT Þ,
the computational complexity is OðKLÞ ¼ OðKðwþ hÞÞ, where L
is the length of the concatenated global projection vector, w and h
are the document image width and height, respectively.

We want to substantially reduce the complexity of Naive-
Global without sacrificing the recognition accuracy. Rather than
considering multidimensional indexing techniques (for example,
see [1], [8]), we propose alternate methods as follows.

We define the Effective Matching Distance (EMD) of template Ti

as half of theminimumdistance between pair-wise templates Ti and
Tj, i.e.,

EðTiÞ ¼
1

2
min

j2½1;K�;j 6¼i
DðTi; TjÞ:

Clearly, if an input CBR Q has a distance DðQ; TiÞ < EðTiÞ, we can
immediately conclude that Ti is the best matching template. If this
condition is not satisfied for all templates in SðT Þ, we need to
compare DðQ; TiÞ over all Tis to find the minimum value. As
EMDs of all templates can be precalculated offline and will not
affect the matching time, theoretically the average computational
complexity of this method is OðKL=2). We call this EMD-based
method “Efficient-Global matching” (“E-Global” for short) because
it can double the speed of Naive-Global.

The efficiency of E-Global relies on the assumption that the
deformation is not too large, i.e., supposeQ is a deformation of T , we
expectDðQ; T Þ is smaller than the corresponding EðT Þ. We call this
assumption “weak-deformation.” This assumption is actually true
for many real applications. However, once the deformation is large
so that DðQ; T Þ � EðT Þ, E-Global will automatically reduce to
Naive-Global. Therefore, the practical computational complexity of
E-Global is usually betweenOðKL=2Þ andOðKLÞ, depending on the
deformation degree of Q with respect to the corresponding T .

With the weak-deformation assumption, we can further reduce
the computation using the triangle inequality. Taking two templates
Ti; Tj, and the inputQ as three points in the high-dimensional space,
we have two triangle inequalities DðQ; TiÞ þDðTi; TjÞ � DðQ; TjÞ
and DðQ; TiÞ þDðQ; TjÞ � DðTi; TjÞ. If the condition

DðQ; TjÞ �DðTi; TjÞ
�� �� � EðTiÞ ð4Þ

is satisfied, we can derive DðQ; TiÞ � EðTiÞ; i.e., the distance
between Ti and Qwill be no less than the EMD of Ti. As mentioned
above, under the weak deformation assumption, the matched
template T of input Q should satisfy DðQ; T Þ < EðT Þ. Therefore, if
(4) holds, Ti can be excluded immediately from being a matched

template of Q. In this way, the L subtractions in the distance
calculation are reduced to one subtraction in (4). Next, among all
the templates for which (4) is not satisfied, we can use E-Global to
find out the optimal matching template. We call this method
“Turbo-Global matching” (“T-Global” for short) because it uses the
triangle inequality to accelerate E-Global. Since all DðTi; TjÞ and
EðTiÞ are computed beforehand, we only need to compute one
distance DðQ; TjÞ (say, j ¼ 1) and check whether (4) holds for each
Ti. In practice, the computational complexity of T-Global is
between OðK þ L� 1Þ and OðKLÞ. Independently, similar usage
of the triangular inequality was also noticed in other applications
[2], [4], [7].

In summary, T-Global is the fastest method; E-Global comes
next; Naive-Global is slowest. They have the same recognition
accuracy. We call them CBP-matching methods hereafter.

3 EXPERIMENTAL RESULTS

We tested the accuracy (in term of the recognition rate rc, i.e., the
percentage of document images that are correctly recognized)
and the efficiency of our new methods. We also compared our
methods with Hull’s pass-code method [10] (called “PC-
matching” here), Hu et al.’s interval-code method [9] (called
“IC-matching”), and Peng et al.’s method [14], [15] (called “CBL-
matching”). For the results reported below, the parameters for
different methods tested were chosen according to the respective
papers [9], [10], [15], i.e., a 4� 4 grid for PC-matching and a
50� 30 grid for IC-matching (we tried many other parameters but
got similar or worse results). The parameters for CBL-matching
are explained later.

3.1 Data Sets

We used two large-scale data sets, i.e., P1000 and USTAX208. We
generated P1000 by excluding 350 very similar templates in an
earlier database of 1,350 document templates reported in [14], [15].
Together with P1000, there is a deformation-generating program
that produces test (query) CBRs with simulated deformations. This
program simulates various image deformations caused by filled-in
document contents, noise, and blocking errors [14], [15]. The
parameters that can be set in this program include the block
misdetection rate Pm, the block misaddition rate Pa, the block size
deformation rate Ps, the size deformation scale factor Ss, the block
location displacement rate Pd, the displacement scale factor Sd, the
rotation probability Pr, and the rotation angle Dr.

The second data set, USTAX208, contains 208 templates of tax
forms of the US Internal Revenue Service (IRS) (http://
www.irs.gov/formspubs/index.html) and 1,040 test forms filled
with different pseudotaxpayer information (the size of each image
is 800� 600 pixels). Two sample CBRs of the IRS forms 1040 and
1040C are shown in Fig. 3. As a thorough analysis of the local

1190 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 9, SEPTEMBER 2003

Fig. 3. CBR examples in the data set USTAX208. (a) Form 1040. (b) Form 1040C.



differences among these forms is time-consuming, inaccurate, and
subject to changes (e.g., due to the annually updated form
columns), many local feature-based methods are not applicable
because distinctive local features are not carefully designed in
these forms. The importance of blocks in a CBR is indexed in terms
of their areas. In the experiments, we only used the NCBR (a
presumed number) largest blocks. (More details of both data sets
are available on request.)

3.2 Recognition Accuracy versus Template Set Size

We used P1000 to compare the recognition accuracy of CBP, CBL,
and IC-matching with respect to different sizes of the template set,
i.e., jSðT Þj. Without a priori knowledge, from P1000 we arbitrarily
selected four nonoverlapping subsets with 50, 100, 200, and
500 templates, respectively. As used in [14], [15], the parameters of
the deformation function were set as fPm ¼ 0:2; Pa ¼ 0:2; Ps ¼
0:2; Ss ¼ 0:2; Pd ¼ 0:5; Sd ¼ 0:5; Pr ¼ 0:5; Dr ¼ 15�g (called DPC1
hereafter). They resulted in significantly deformed test CBRs [14],
[15], many of which have larger deformations than real cases (as
shown in Section 3.4). In each trial of the experiment, we generated
20,000 test CBRs (10 times the quantity in [15]).

Table 1 shows results of the recognition rate, rc, with respect to
jSðT Þj. rc ofCBP-matching is always larger than 99percent and is not
sensitive to jSðT Þj; evidently CBP-matching is better than CBL and
IC-matching.Ofnote a larger template set often allowshigher chance
formisrecognize a test image, unless the features areverydistinctive.
This suggests CBP vectors are much more distinctive than
CBL features and the interval code. The results shown in Table 1
also indicate CBP-matching is scalable to large DIR problems.

3.3 Recognition Accuracy versus CBR Block Number

Weused thedata setUSTAX208 to compare the recognition accuracy
of CBP, CBL, PC, and IC-matching, with respect to different
numbers of CBR blocks, i.e., NCBR. For each of the 208 template
forms and the 1,040 test forms, we adjusted NCBR from 10 to 60. A
larger NCBR indicates a more similar CBR to the respective form
image.

Table 2 shows rc of different methods with respect to NCBR.
Obviously, CBP-matching produces the highest rc, which is
significantly better than the other three methods. rc of CBP-
matching reaches the maximum when the 20 largest CBR blocks
are used and does not degrade when more blocks are added. This
indicates that CBP-matching makes a proper use of the most
important features and performs robustly to additional informa-
tion. In contrast, for CBL, PC, and IC-matching methods, the
respective rc reaches the highest value when about the 20 largest
blocks are used, but degrades with additional blocks. This

sensitivity to NCBR is a result of the local matching error of every
block in CBL-matching [14], [15], every row in IC-matching [9], or
every bin in PC-matching [10]. As we neither expect more features
would lower the performance nor want to iterate the matching
procedure (which will increase the computational cost) to find the
optimal NCBR, this sensitivity is a critical disadvantage.

The better performance of PC-matching over both CBL and IC-
matching is expected because it produces feature vectors by
summingup localpass codeongrid-cells and thuscanbeunderstood
in a way similar to CBP-matching. However, since it still uses block
contents (i.e., texts) to generate feature vectors, it can hardly
outperform CBP-matching when there are a lot of variations in
document contents.

3.4 A Comparison between Simulated Deformations and
Real Deformations

One important question to ask is how well the deformations
produced by the deformation-generating program of P1000 in
Section 3.2 replicate the deformations of real data (e.g., USTAX208).
To answer this question, we adjusted parameters of the deforma-
tion-generating program to create a set of simulated test CBRs using
real templates, varying from strong deformations to weak deforma-
tions. We observed the range of parameters within which the
simulated deformations were closest to the deformations of real
data. Obviously, a DIR method obtains better recognition accuracy
when the data haveweaker deformations,which implies thatwe can
compare the deformation degrees via the various recognition
accuracies obtained. Thus, for each configuration of the deformation
parameters, we depicted columns of rc results like those of rcðCBLÞ
and rcðCBPÞ in Table 2. The generated table is called Deformation
Characteristics Table ðDeCTÞ of a Deformation Parameter Config-
uration (DPC). The deformation-generating program in P1000 was
applied to the templates in data set USTAX208 to examine whether
the simulated deformations were comparable to the real cases. We
defined four gradually weakening deformations:

1. DPC1: {as used in Section 3.2};
2. DPC2:fPm ¼ 0:10; Pa¼ 0:10; Ps ¼ 0:10; Ss ¼ 0:10; Pd ¼ 0:3;

Sd ¼ 0:3; Pr ¼ 0:3; Dr ¼ 15�g;
3. DPC3:fPm ¼ 0:10; Pa ¼ 0:10; Ps¼ 0:10; Ss ¼ 0:10; Pd ¼ 0:2;

Sd ¼ 0:2; Pr ¼ 0:2; Dr ¼ 10�g;
4. DPC4:fPm¼ 0:05; Pa ¼ 0:05; Ps ¼ 0:05; Ss ¼ 0:05; Pd ¼ 0:1;

Sd ¼ 0:1; Pr ¼ 0:1; Dr ¼ 10�g.
The obtained DeCTs are illustrated in Table 3. Comparing the

DeCTðCBPÞ and DeCTðCBLÞ results with the respective rcðCBPÞ
and rcðCBLÞ in Table 2,we see that the real deformationdue to filled-
in contents is comparable to the simulated deformations generated
withDPC3 (and, for CBP-matching, it is evenweaker, in the range of
DPC3 and DPC4) and much weaker than those simulated deforma-
tions generated with DPC1 (as used in Section 3.2). Hence, we
conclude that 1) the deformation-generating program in P1000 can
be used to assist the study of DIR algorithms, generatingmeaningful
results as in Section 3.2 and 2) the weak deformation assumption in
Section 2.2 appears reasonable for the USTAX208 data set.

3.5 Computational Efficiency

Here, we investigated the computational efficiency of E-Global and
T-Global. We define RE and RT as the percentages of test images to
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TABLE 1
Relationship between rc (%) and jSðT Þj

TABLE 2
Relationship between rc (%) and NCBR

TABLE 3
Deformation Characteristics Table ðDeCTÞ



which E-Global and T-Global can be applied, respectively. They
are actually ratios of test images that satisfy the weak-deformation
assumption and (4), respectively.

For P1000, we first considered RE with respect to various
deformations of the test CBRs (generated by the parameter
configurations DPC1 to DPC4) and the size of the template set,
i.e., jSðTÞj. As shown in Table 4, RE increases significantly as the
deformation decreases from DPC1 to DPC4. This indicates that the
theoretical computational complexity of E-Global, i.e., about half of
the computational load of Naive-Global, can be attained for test
images with the deformation strength like DPC4. On the contrary,
RT decreases as the deformation decreases from DPC1 to DPC4,
mainly because templates in P1000 seldom satisfy (4); however, this
side effect appears to be minor because the computational complex-
ity for weak deformations is largely governed by E-Global. In
addition, RT increases with jSðT Þj; this is mainly because the
volume of the projection vector space is limited, a larger jSðT Þj
makes the projection vector space become denser and each template
have a smaller EMD, therefore, (4) is more easily satisfied.

ForUSTAX208,with our implementation inMatlab/C++ on a PC
with PIII 1GHz CPU running Linux 7.0, Naive-Global takes about
21 seconds (total time) to recognize 1,040 real test images, while
E-Global andT-Global only take about 11 seconds, as shown in the tE
and tT columns of Table 4. A computation reduction of near
50 percent is in good accordance with our analysis in Section 2.2.
Table 4 also shows that RE is large (> 94 percent) for all NCBR,
indicating most test forms have weak deformations; RT is around
6 percent, which anyhow still contributes to a speed improvement.

4 DISCUSSION AND CONCLUSION

The experimental results indicate that our CBP-matching (i.e.,
Naive-Global, E-Global, and T-Global) methods are scalable to real
DIR applications. These methods demonstrate high recognition
accuracy and computational efficiency for various types of
document images (simulated or real), various sizes of template
sets, and various document image deformations. The good
performance of our approach attributes to the following factors:
1) A better representation of the spatial relationship of component
blocks: The concatenated global directional projection vectors have
three advantages in representing document images. First, the
projection vector well represents the spatial relationships of
component blocks. Second, they allow canonical and economical
computation. Third, they can be regarded as the sum of pixel-level
deformations, which facilitates effective computation in a prob-
abilistic framework. 2) A good mathematical approximation of
block deformations: Although the Gaussian approximation itself
has been applied to a variety of applications, as far as we know,
this paper is the first attempt to apply it to DIR problems. This
approach allows using the intuitive matching methods and avoids

inaccurate local block deformation models. 3) Realistic methods,
i.e., E-Global and T-Global, to lower the computational complexity:
These methods can remove a large portion of redundant
computations related to the factors jSðT Þj (the number of templates
in a database) and L (the dimensionality of the feature vector).

Our planned future work includes applying these methods to
real DIR applications and other similar applications, and introdu-
cing more geometric knowledge to refine the high-dimensional
pattern-matching algorithms.
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TABLE 4
Relationship of the Computational Cost, jSðT Þj, and NCBR

RE and RT : Percentages of templates that satisfy the respective conditions for
applying E-Global and T-Global; tE and tT : The total time cost by E-Global and
T-Global to recognize the 1,040 real test images.
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